import os
import yaml
from pyannote.audio.core.model import CACHE_DIR as PYANNOTE_CACHE_DIR
CACHE_DIR = os.getenv(
"AUTOT_CACHE",
os.path.expanduser("~/.cache/torch/models"),
)
if CACHE_DIR != PYANNOTE_CACHE_DIR:
os.environ["PYANNOTE_CACHE"] = os.path.join(CACHE_DIR, "pyannote")
WHISPER_DEFAULT_PATH = os.path.join(CACHE_DIR, "whisper")
PYANNOTE_DEFAULT_PATH = os.path.join(CACHE_DIR, "pyannote")
PYANNOTE_DEFAULT_CONFIG = os.path.join(PYANNOTE_DEFAULT_PATH, "config.yaml")
[docs]
def config_diarization_yaml(file_path: str, path_to_segmentation: str = None) -> None:
"""Configure diarization pipeline from a YAML file.
This function updates the YAML file to use the given segmentation model
offline, and avoids manual file manipulation.
Args:
file_path (str): Path to the YAML file.
path_to_segmentation (str, optional): Optional path to the segmentation model.
Raises:
FileNotFoundError: If the segmentation model file is not found.
"""
with open(file_path, "r") as stream:
yml = yaml.safe_load(stream)
segmentation_path = path_to_segmentation or os.path.join(PYANNOTE_DEFAULT_PATH, "pytorch_model.bin")
yml["pipeline"]["params"]["segmentation"] = segmentation_path
if not os.path.exists(segmentation_path):
raise FileNotFoundError(f"Segmentation model not found at {segmentation_path}")
with open(file_path, "w") as stream:
yaml.dump(yml, stream)